Phase Transition during Mechanical Dehydration of y-FeOOH

D. Klissurski and V. Blaskov

Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, I040 Sofia, Bulgaria

The mechanical dehydration of γ -FeOOH leads to α -Fe₂O₃; this has been confirmed by X-ray analysis and Mössbauer spectroscopy.

In a previous paper it was shown that the thermal dehydration of y-FeOOH in air at 200-300 *"C* leads to the formation of γ -Fe₂O₃.¹ It was of interest to compare these results with the mechanical dehydration of this compound.

Figure 1. X -Ray analysis of (a) the initial sample of γ -FeOOH; (b) after 26 h grinding; (c) after 42 h grinding; (d) after 57 h grinding. $- - - \gamma$ -FeOOH, $-\gamma$ -Fe₂O₃. grinding. $- - - - \gamma$ -FeOOH, $-$

y-FeOOH was obtained by the method of Sholtsova *et a/.2* Both the X -ray phase analysis and the Mössbauer and i.r. spectra confirmed the high phase purity of the compound. Its specific surface area as measured and calculated by the Brunauer-Emmett-Teller method using low-temperature nitrogen adsorption³ was 115 m^2/g . The mechanical dehydration was carried out by grinding specimens in a mechanically driven agate mortar for 60 h. At definite time intervals samples were taken and subjected to X -ray phase analysis using $Co-K_{\alpha}$ radiation and to Mössbauer spectroscopy. The results from the investigations by the two methods showed that after 25 h of grinding partial dehydration had taken place whereas after 60 h dehydration was practically complete.

The behaviour of γ -FeOOH during thermal dehydration is different from that in mechanical dehydration. It was established that mechanical dehydration led, at room temperature, to the direct transition of γ -FeOOH into α -Fe₂O₃. After grinding for 25 h the system consisted of two phases; α -Fe₂O₃ and the still undecomposed γ -FeOOH (Figure 1). After 57 h of grinding the transition to α -Fe₂O₃ was practically complete.

 γ -Fe₂O₃ did not appear during mechanical dehydration. The Mossbauer spectra (Figure **2)** show that grinding leads to α -Fe₂O₃ with a magnetically disordered structure which differs from the normal crystal state. This structure may be the reason for the non-Lorentzian spectral line shapes and for the appearance of a doublet. There is also a very small

Figure 2. Mössbauer spectra of (a) the initial sample of y-FeOOH; **(b)** a sample ground for 57 h.

amount of undehydrated γ -FeOOH. The elucidation of the mechanism of the observed phase transition needs further investigation.

The thermal dehydration of γ -FeOOH is pseudomorphic in character and takes place by a topotactic reaction.⁴ The cubic structure of γ -Fe₂O₃ appears when γ -FeOOH is heated in air at temperatures below $300^{\circ}C^{1,2}$ It is probable that its formation needs a definite activation energy. Mechanical dehydration does not create the conditions for an activated process which is probably why the orthorhombic structure of γ -FeOOH converts into the close-packed hexagonal structure of α -Fe₂O₃.

In principle it can also be assumed that the conversion of γ -Fe₂O₃ into α -Fe₂O₃ during the grinding process⁵ proceeds faster than its evolution. This seems, however, less probable. Obviously, the direct transition of γ -FeOOH into α -Fe₂O₈ upon mechanical dehydration is of interest from the viewpoint of non-equilibrium phase transition theory.

Received, 7th March 1983; Corn. **296**

References

- 1 D. Klissurski, J. Subrt, V. Blaskov, **J.** Lipka, P. Hanousek, and **K.** Bechine, *J. Mater. Sci.,* in the press.
- 2 **A.** Solcova, **J.** Subrt, **P.** Hanousek, P. Holba, V. Zapletal, **and** J. Lipka, *Silikaty,* 1980, **24,** 133.
- 3 G. M. Bliznakov, I. V. Bakardjiev, and **E. M.** Gocheva, *J. Catal.,* 1970, **18,** 260.
- 4 H. P. Rooksby, 'The X-Ray Identification and Crystal Structures of Clay Minerals,' ed. **E.** Brown, Mineralogical Society, London, 1961, pp. 354-392.
- *⁵*Y. Nakatani, M. Sakai, *S.* Nakatani, and **M.** Matsuoka, *J. Mater. Sci. Lett.,* 1983, *2,* 129.